Variational Auto-Encoders and Extensions

Diederik (Durk) Kingma

Max Welling

Universiteit van Amsterdam
Parts of this talk

1. Basics
2. Extension with auxiliary variables
3. Recent advances
Variational auto-encoders
Basic problem setup

- We assume:
 - **A huge dataset** of observations
 \[X = \{x^1, \ldots, x^N\} \]
 - There exists a **simple latent space** \(z \):
 \[z \sim p_\Theta(z) \]
 \[x|z \sim p_\Theta(x|z) \]
 - **Exact posterior distribution** \(p_\Theta(z|x) \) **is intractable** so **EM is intractable**

- We wish to:
 - **efficiently learn** approx. maximum likelihood parameters \(\Theta \)
 - **efficiently infer** latent variables for new observations \(x \)
Deep Latent-Variable Models

- directed latent variables model
 - can represent complicated marginal distributions over x

- deep neural nets
 - can represent complicated conditional dependencies

- We combine those strengths

Mathematical notation:

$$p(x, z_1, z_2) = p(x|z_2)p(z_2|z_1)p(z_1)$$
Example model

- \(p(z) = N(0, I) \)
- \(p_\theta(x|z) = N(\mu, \sigma^2) \)
 \[\mu = f_\theta(z) = \text{multilayer neural net} \]
- With flexible neural net \(f_\theta(z) \), \(p_\theta(x) \) can be almost arbitrarily complicated / multi-modal distribution
- But intractable posterior distribution \(p(z|x) \)
 - Need approximate inference for learning
Non-variational approx. inference methods

- Point estimate of $p(z|x)$ (MAP)
 - **Pro**: simple, fast
 - **Con**: too biased / approximate

- Markov Chain Monte Carlo (MCMC):
 - **Pro**: asymptotically unbiased
 - **Con**: often expensive, hard to assess convergence
Variational inference with Inference Networks

- Introduce **parametric model** $q_\phi(z|x)$ of true posterior
 - ϕ: **variational parameters**
 - parameterised by neural networks

 - Also learns **parametric inference model** $q(z|x)$ with SGD
 - But wake-sleep uses **different objective for** $q_\phi(z|x)$ which doesn’t optimise a bound log $p(x)$
Auto-Encoding Variational Bayes

[Kingma and Welling, 2013/2014]
[Rezende et al, 2014]

- $q_\phi(z|x) = \mathcal{N}(\mu, \sigma^2)$
 $[\mu, \sigma^2] = f^{(z|x)}(x, \phi) = \text{multilayer neural net}$

- Objective: lower bound of log $p(x)$.
 - Jointly optimized w.r.t. ϕ and θ
 - This is approx. maximum likelihood
 - Simple SGD:
 - Sampling small minibatches of data
 - Sampling from approx. posterior

- This also minimizes an expected KL divergence
 $D_{KL}(q_\phi(z|x)||p(z|x))$
 \rightarrow gives us cheap approx. inference for new datapoints
Variational bound

\[
\log p(x) = \mathcal{L}(x) + D_{KL}(q_\phi(z|x)||p(z|x))
\]

Objective per datapoint:

\[
\mathcal{L}(x) = \mathbb{E}_{q_\phi(z|x)} \left[\log p(x, z) - \log q_\phi(z|x) \right]
\]

Abbreviated:

\[
\mathcal{L}(x) = \mathbb{E}_{q_\phi(z|x)} \left[f_\phi(x, z) \right]
\]
Relatively new idea: **Stochastic Gradient-based Variational Inference**

Objective per datapoint: $$\mathcal{L}(x) = \mathbb{E}_{q_{\phi}(z|x)}[f_{\phi}(x, z)]$$

- Often no analytical solution to exact gradient $\nabla_{\phi} L$

- Solution: *(doubly) stochastic gradient ascent*

 - Only requires *unbiased estimates* of gradient

 - Can use *small minibatches of data*
Reparameterization trick

Original form

Reparameterised form

\[
\text{Backprop} \quad \frac{\partial f}{\partial \phi_i} \quad \frac{\partial f}{\partial z_j} = \frac{\partial L}{\partial \phi_i}
\]

\[
\sim q(z|\phi, x)
\]

\[
\sim p(\varepsilon)
\]

\[
g(\phi, x, \varepsilon)
\]

\[
\frac{\partial f}{\partial \phi_i} \approx \frac{\partial L}{\partial \phi_i}
\]

Deterministic node

Random node

[Kingma, 2013]
[Bengio, 2013]
[Kingma and Welling 2014]
[Rezende et al 2014]
Reparameterization trick

- Can be performed for a broad class of distributions, e.g.:
 - **Location-scale transforms**
 - Normal, Laplace, Student t’s, Logistic, etc.
 - **Inverse of CDF**
 - Cauchy, Rayleight, Pareto, etc
 - Other strategies exist
 - Gamma, Dirichlet, Beta, Chi-Squared, etc
Stochastic Gradient Variational Inference

- Variational inference by gradient ascent

- “Swiss army knife” for inference:
 - Works with almost any $p(x,z)$
 - Works with almost any $q(z|x)$
 - Just requires gradient ascent on single objective
Connection to auto-encoders

- Variational Auto-Encoder (\textbf{VAE}):
 - \(q(z|x) \): stochastic neural encoder
 - \(p(x|z) \): stochastic neural decoder

Objective function:

\[
L = (\log p(x|z) + \log p(z) - \log q(z|x))|_{z=g(\epsilon)}
\]

- Reconstruction error
- Regularization terms dictated by the bound
Conv. net as encoder/decoder, trained on faces

(trained by Alec Radford 2015)
Classifier vs generative model

Each edge is parameterised as a deep neural net
Generative model
for semi-supervised learning

Inference model

\[q(y|x) = \text{classifier} \]

Generative model

Variational training includes optimisation of \(q(y|x) \)
VAEs are SOTA on semi-supervised learning on MNIST

“Improving Semi-Supervised Learning with Auxiliary Deep Generative Models”

[Maaløe, Sønderby, Sønderby and Winter, 2015]
Analogy-making

[Diagram of analogies and number sequences]
Inference model

Generative model

\[p(x,z) \]

Inference model

\[q(y,z|x) \]

Implicit inference model

\[q(z|x) = \int q(y,z|x) \, dy \]

- **Pro:** more accurate/flexible inference model \(q(z|x) \)
- **But:** intractable PDF \(q(z|x) = \int q(y,z|x) \, dy \)
Inference model
\(q(y,z|x) \)

Generative model
\(p(x,z) \)

auxiliary model
\(r(y|x,z) \)

\[\mathcal{L}_{aux} = \mathbb{E}_{q_{\phi}(y,z|x)} \left[\log p(x, z) - \log q_{\phi}(y, z|x) + \log r_{\phi}(y|z, x) \right] \]
Generative model \(p(x,z) \)

Inference model \(q(z_1, \ldots, z_T | x) \)

Auxiliary model \(r(z_1, \ldots, z_{T-1} | z_T, x) \)

MCMC chain, e.g. Hamiltonian Monte Carlo, as inference model with auxiliary variables
Table 1.
Comparison of our approach to other recent methods in the literature. We compare the average marginal log-likelihood measured in nats of the digits in the MNIST test set. See section 3.2 for details.

<table>
<thead>
<tr>
<th>Model</th>
<th>(\log p(x))</th>
<th>(\log p(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\leq -)</td>
<td>(= -)</td>
</tr>
<tr>
<td>HVI + fully-connected VAE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without inference network:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 leapfrog steps</td>
<td>90.86</td>
<td>87.16</td>
</tr>
<tr>
<td>10 leapfrog steps</td>
<td>87.60</td>
<td>85.56</td>
</tr>
<tr>
<td>With inference network:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No leapfrog steps</td>
<td>94.18</td>
<td>88.95</td>
</tr>
<tr>
<td>1 leapfrog step</td>
<td>91.70</td>
<td>88.08</td>
</tr>
<tr>
<td>4 leapfrog steps</td>
<td>89.82</td>
<td>86.40</td>
</tr>
<tr>
<td>8 leapfrog steps</td>
<td>88.30</td>
<td>85.51</td>
</tr>
<tr>
<td>HVI + convolutional VAE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No leapfrog steps</td>
<td>86.66</td>
<td>83.20</td>
</tr>
<tr>
<td>1 leapfrog step</td>
<td>85.40</td>
<td>82.98</td>
</tr>
<tr>
<td>2 leapfrog steps</td>
<td>85.17</td>
<td>82.96</td>
</tr>
<tr>
<td>4 leapfrog steps</td>
<td>84.94</td>
<td>82.78</td>
</tr>
<tr>
<td>8 leapfrog steps</td>
<td>84.81</td>
<td>82.72</td>
</tr>
<tr>
<td>16 leapfrog steps</td>
<td>84.11</td>
<td>82.22</td>
</tr>
<tr>
<td>16 leapfrog steps, (n_h = 800)</td>
<td>83.49</td>
<td>81.94</td>
</tr>
<tr>
<td>From (Gregor et al., 2015):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBN 2hl</td>
<td>84.55</td>
<td></td>
</tr>
<tr>
<td>EoNADE</td>
<td>85.10</td>
<td></td>
</tr>
<tr>
<td>DARN 1hl</td>
<td>88.30</td>
<td>84.13</td>
</tr>
<tr>
<td>DARN 12hl</td>
<td>87.72</td>
<td></td>
</tr>
<tr>
<td>DRAW</td>
<td>80.97</td>
<td></td>
</tr>
</tbody>
</table>

Large improvement in nats

DRAW: Gregor et al, 2014
Recurrent VAE with attention
Variational Inference with Normalizing Flows
[Rezende and Mohamed, ICML 2015]
A Recurrent Latent Variable Model for Sequential Data
[Chung et al, 2015]

Generating speech with a variational RNN
Generating Images from Captions with Attention

[Mansimov et al, 2015]
(under submission at ICLR)

A stop sign is flying in blue skies.

A herd of elephants flying in the blue skies.

A toilet seat sits open in the grass field.

A person skiing on sand clad vast desert.
Importance Weighted Autoencoders

[Burda et al 2015]
(under submission at ICLR)

- Objective:

\[\mathcal{L}_k(x) = \mathbb{E}_{h_1, \ldots, h_k \sim q(h|x)} \left[\log \frac{1}{k} \sum_{i=1}^{k} \frac{p(x, h_i)}{q(h_i|x)} \right] \]

- Equivalent to VAE objective for \(k=1 \)

- For \(k>1 \), optimizes a tighter bound, at the expense of extra computation
Summary

- Variational Auto-Encoding: **scalable generative modeling**
 - Works with almost any model $p(x,z)$
 - Works with almost any approx. posterior $q(z|x)$
 - Scales to huge datasets
 - Just requires gradient ascent on single objective

- Applications:
 - deep synthesis / analogic reasoning
 - nonlinear PCA
 - semi-supervised learning
 - optimizing MCMC hyper-parameters

https://github.com/dpkingma