Stochastic Backpropagation, Variational Inference, and Semi-Supervised Learning

Diederik (Durk) Kingma

Danilo J. Rezende

Shakir Mohamed

Max Welling

UNIVERSITEIT VAN AMSTERDAM

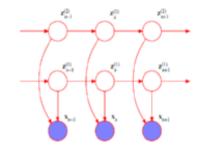
Stochastic Gradient Variational Inference

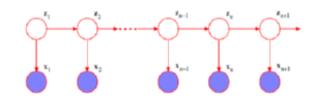
Bayesian inference problem setup

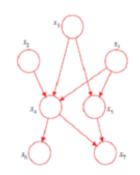
• x: observed data

z: *unobserved/latent variables* or parameters p(x,z): probabilistic model, often factorized

- We are (very) interested in inferring a posterior distribution p(z|x)
 e.g.:
 - Full distribution over model parameters
 - Enables learning parameters in latentvariable models
- p(z|x) = p(x,z)/p(x) most often *intractable*
 - Need good approximations







Non-variational approx. inference methods

• Point estimate of p(z|x) (MAP)

- **Pro**: simple, fast
- **Con**: overfitting
- Markov Chain Monte Carlo (MCMC):
 - **Pro**: asymptotically unbiased
 - Con: often expensive, hard to assess convergence

Variational inference

- Introduce parametric model $q_{\phi}(z)$ or $q_{\phi}(z|x)$ of true posterior
 - φ: *variational parameters*
- Objective: optimize φ w.r.t. the KL-divergence: $D_{KL}(q_{\varphi}(z|x)||p(z|x))$
 - $q_{\phi}(z|x) = p(z|x)$ when $D_{KL}(q_{\phi}(z|x)||p(z|x)) = 0$

Variational bound

$$\log p(x) = \mathcal{L} + D_{KL}(q_{\phi}(z|x)) || p(z|x))$$

$$\checkmark$$

Objective:

$$\mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p(x, z) - \log q_{\phi}(z|x) \right]$$

Abbreviated:

$$\mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[f_{\phi}(x, z) \right]$$

 Non-gradient-based optimisation technique: Mean-Field VB with fixed-point equations

Pro: efficiency **Con:** intractable / not applicable in many cases

Relatively new idea: Stochastic Gradient-based Variational Inference

Objective:

$$\mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[f_{\phi}(x, z) \right]$$

- Often no analytical solution to exact gradient $\nabla_{\varphi} L$
- Solution: stochastic gradient ascent
 Only requires unbiased estimates of gradient

Strategy 1: Standard gradient estimator

Objective:

$$\mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[f_{\phi}(x, z) \right]$$

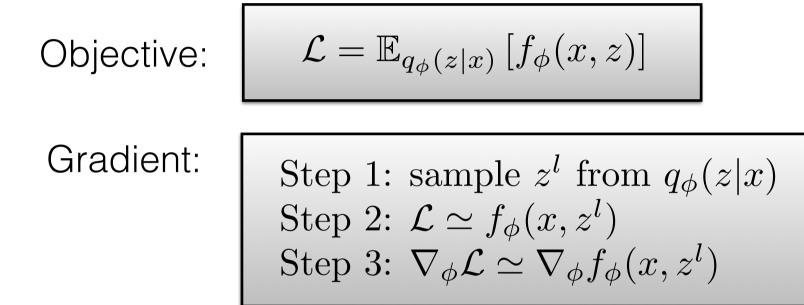
Gradient:

$$\nabla_{\phi} \mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[(\nabla_{\phi} \log q_{\phi}(z|x)) f_{\phi}(x,z) \right]$$
$$\simeq (\nabla_{\phi} \log q_{\phi}(z^{l}|x)) f_{\phi}(x,z^{l})$$
where $z^{l} \sim q_{\phi}(z|x)$

Pro: Valid for almost any q(z|x).

Con: Variance. Often requires variance reduction techniques.

[Hoffman et al, 2013] Stochastic Variational Inference [Blei et al, 2013] Variational bayesian inference with stochastic search. [Ranganath et al, 2014] Black Box Variational Inference. [Mnih and Gregor, 2014] Neural Variational Inference and Learning in Belief Networks.



Problem: requires backpropagation through sampling process

Strategy 2: Reparameterized gradient estimator

Objective:

$$\mathcal{L} = \mathbb{E}_{q_{\phi}(z|x)} \left[f_{\phi}(x, z) \right]$$

Gradient:

Step 1: sample
$$\epsilon^l$$
 from $p(\epsilon)$
Step 2: $z^l = g_{\phi}(\epsilon)$, such that $z^l \sim q_{\phi}(z|x)$
Step 3: $L \simeq f_{\phi}(x, z^l)$
Step 4: $\nabla_{\phi} \mathcal{L} \simeq \nabla_{\phi} f_{\phi}(x, z^l)$

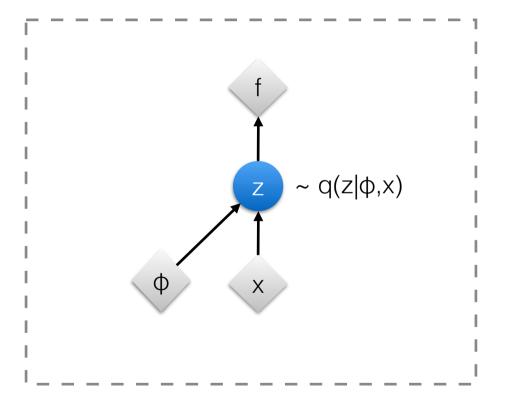
■ Simple, low variance.

Can be combined with standard gradient for discrete vars.

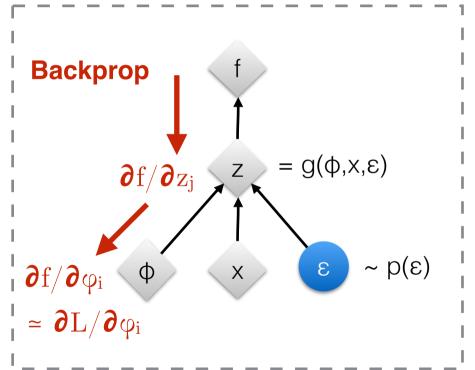
[Kingma and Welling, 2013/2014] Auto-encoding Variational Bayes [Rezende et al, 2014] Stochastic Backpropagation and Variational Inference in DLVMs [Titsias and Lázaro-Gredilla, 2014] Doubly Stochastic VB for non-Conjugate Inference

Reparameterization trick

Original form



Reparameterised form



- : Deterministic node
- : Random node

[Kingma, 2013] [Bengio, 2013] [Kingma and Welling 2014] [Rezende et al 2014]

Reparameterization trick

- Can be performed for a broad class of distributions, e.g.:
 - Location-scale transforms
 Normal, Laplace, Student t's, Logistic, etc.

Inverse of CDF

Cauchy, Rayleight, Pareto, etc

Other strategies exist
 Gamma, Dirichlet, Beta, Chi-Squared, etc

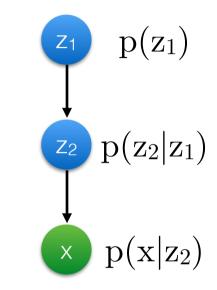
Stochastic Gradient Variational Inference

- Variational inference by gradient ascent
- "Swiss army knife" for inference:
 - Works with almost any p(x,z)
 - Works with almost any q(z|x)
 - Just requires gradient ascent on single objective

Deep latent-variable models

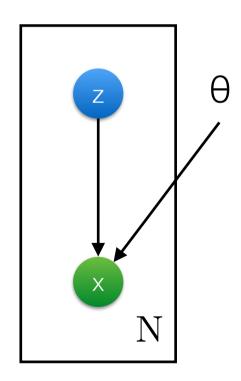
Deep Latent-Variable Models

- We combining the strengths of deep neural nets with those of latent-variable models
 - directed latent variables models: can represent complicated marginal distributions over x
 - probabilistic deep neural nets:
 can represent complicated conditional dependencies p(y|x) = f(x,y)
- Intractable posterior distribution p(z|x) => Approximate inference



 $egin{array}{ll} {
m p}({
m x},{
m z}_1,{
m z}_2) = \ {
m p}({
m x}|{
m z}_2){
m p}({
m z}_2|{
m z}_1){
m p}({
m z}_1) \end{array}$

Example model

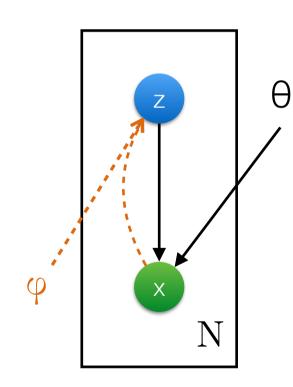


- z: latent variable (low-dimensional)
 - x: observed variable
 - θ : parameters
- p(z) = N(0,I)

- x: e.g. Face
- $p_{\theta}(x|z) = N(\mu, \sigma^2)$ $[\mu, \sigma^2] = f^{(x|z)}(z; \theta) = multilayer neural net$

Auto-Encoding Variational Bayes

[Kingma and Welling, 2013/2014] [Rezende et al, 2014]



- Objective: lower bound of log p(x).

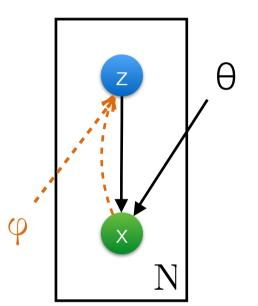
$$\mathcal{L} = \sum_{i=1}^{N} \mathbb{E}_{q_{\phi}(z|x^{i})} \left[\log p_{\theta}(x^{i}, z) - \log q_{\phi}(z|x^{i}) \right]$$

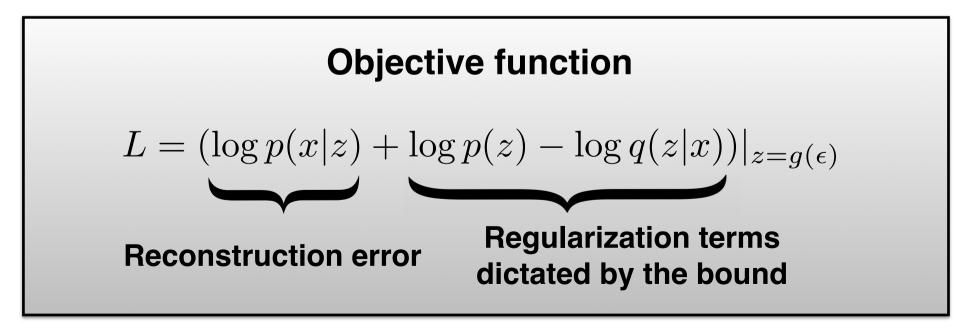
• Jointly optimized w.r.t. φ and θ

- Doubly stochastic optimization:
 - Using small minibatches of data
 - Using our proposed gradient estimator

Connection to auto-encoders

- "Variational Auto-Encoder":
 - q(z|x): stochastic encoder p(x|z): stochastic decoder
 - Variational bound decomposes as negative reconstruction error plus regularisation terms



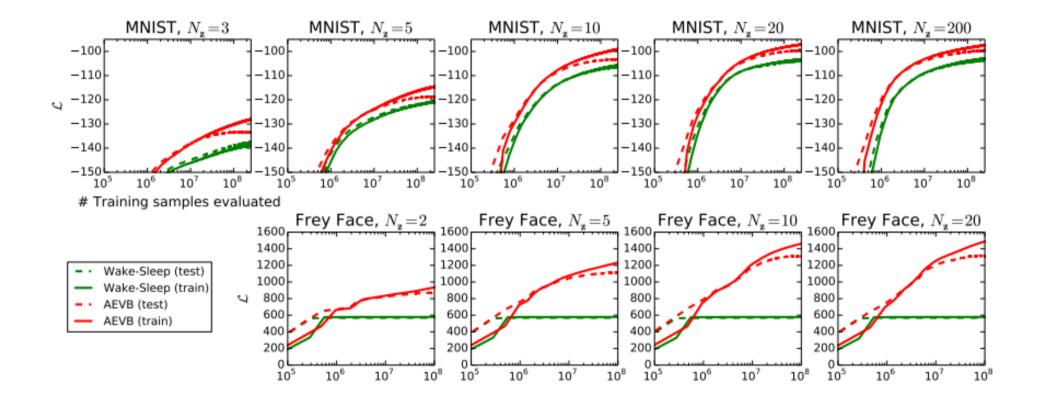


Connection to Helmholtz Machine / Wake-Sleep

(1994/1995, Dayan/Hinton/Frey/Neal, Science)

- Also introduced parametric inference model q(z|x) learned with gradient ascent
- But the wake-sleep algorithm used incorrect gradient for q
- Main difference is: now we know how to learn Q correctly with gradient ascent

AEVB vs Wake-Sleep



3D latent space

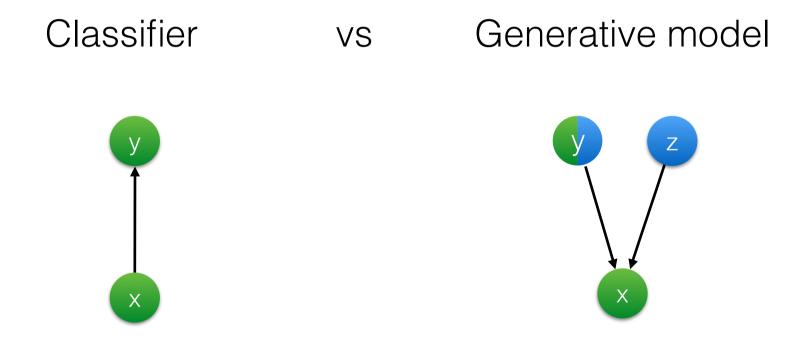
ツフフフフフフフフフフフフフ 77777777777 777777777777 777777 777777 77777777 77777777

Labeled faces in the wild

Semi-Supervised Learning with Deep Generative Models

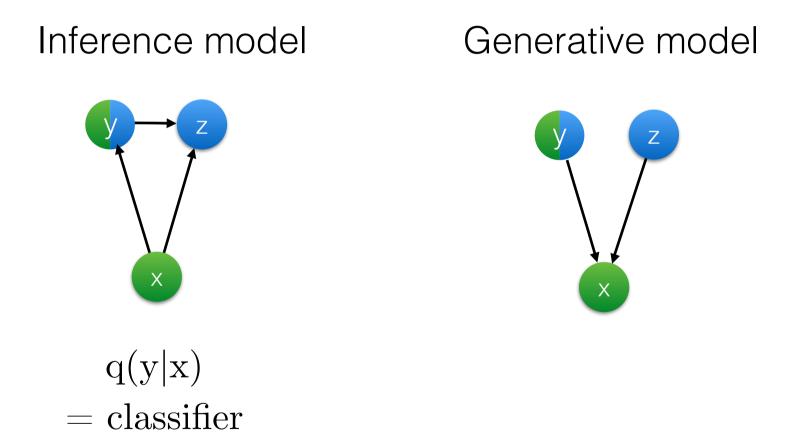
Diederik P. Kingma (*) Danilo J. Rezende (**) Shakir Mohamed (**) Max Welling (*)

Classifier vs generative model



Each edge is parameterised as a deep neural net

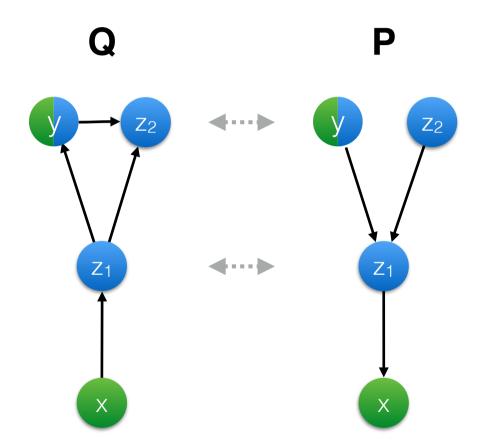
Generative model for semi-supervised learning



Each edge is parameterised as a deep neural net

Deeper Approach

Stacked semi-supervised learner



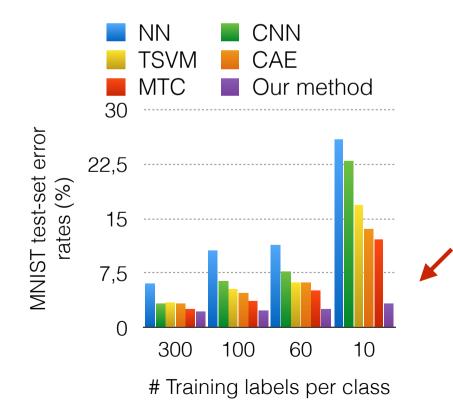
Each edge is parameterised as a deep neural net

Classification Results

MNIST

N	NN	CNN	TSVM	CAE	MTC	AtlasRBF	M1+TSVM	M2	M1+M2
100	25.81	22.98	16.81	13.47	12.03	$8.10(\pm 0.95)$	$11.82 (\pm 0.25)$	$11.97 (\pm 1.71)$	3.33 (± 0.14)
600	11.44	7.68	6.16	6.3	5.13	-	$5.72 (\pm 0.049)$	$4.94 (\pm 0.13)$	$2.59 (\pm 0.05)$
1000	10.7	6.45	5.38	4.77	3.64	3.68 (± 0.12)	$4.24 (\pm 0.07)$	$3.60 (\pm 0.56)$	2.40 (± 0.02)
3000	6.04	3.35	3.45	3.22	2.57	-	3.49 (± 0.04)	$3.92 (\pm 0.63)$	$2.18 (\pm 0.04)$

VNN



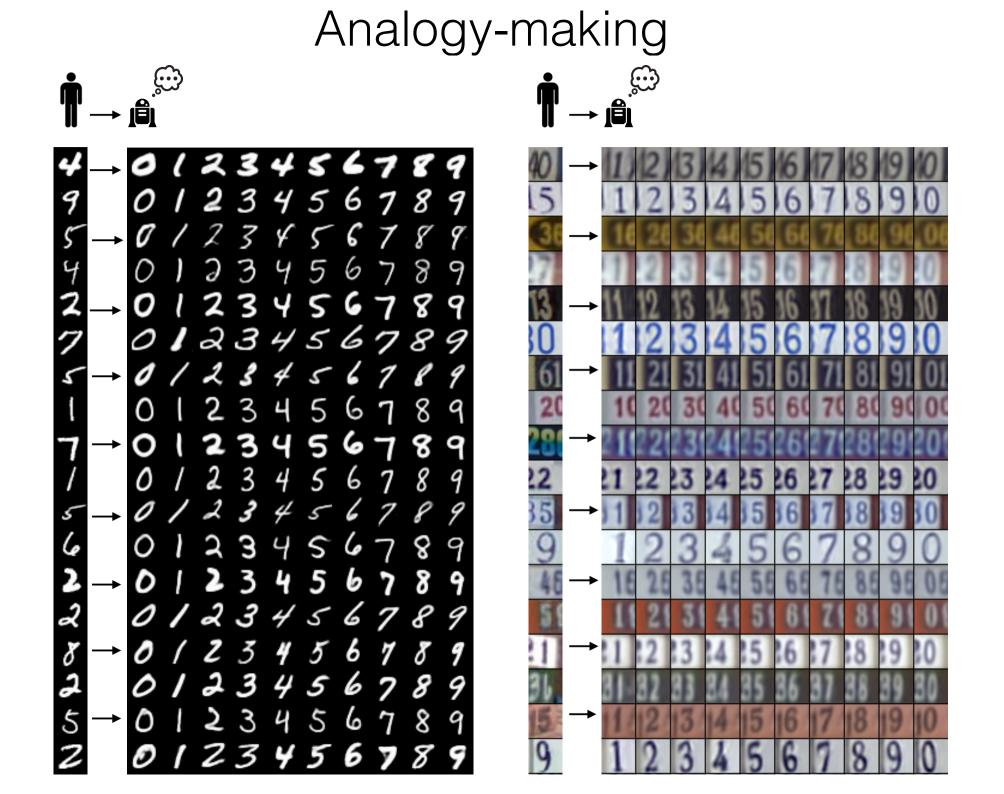
SVHN

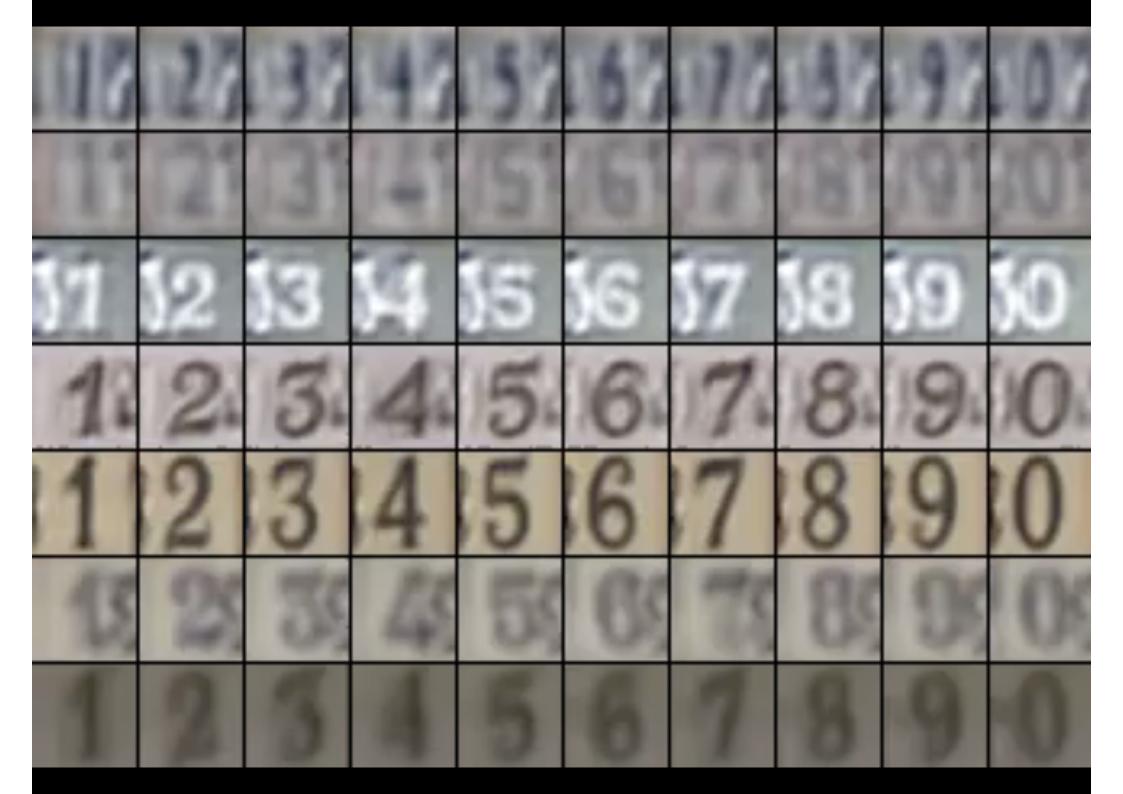
KNN	TSVM	M1+KNN	M1+TSVM	M1+M2
77.93	66.55	65.63	54.33	36.02
(± 0.08)	(± 0.10)	(± 0.15)	(± 0.11)	(± 0.10)

N	ORB
TOVM	M1 + VNN

MITCVM

KININ	15 V M	MIT+KININ	M1+13VM	_
$78.71 (\pm 0.02)$	26.00 (± 0.06)	65.39 (± 0.09)	18.79 (± 0.05)	-





Summary

- Stochastic Gradient Variational Inference:
 "Swiss army knife" for inference
 - Works with almost any model p(x,z)
 - Works with almost any approx. posterior q(z|x)
 - Just requires gradient ascent on single objective
- Applications:
 - any continuous posterior inference problem
 - deep latent-variable models / Helmholtz machines
 - semi-supervised learning

